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ANR project QUTE-HPC: QUantum Turbulence Exploration by
High-Performance Computing

ANR Project QUTE-HPC (2019-2023)
10 members = 5 Physics + 5 Mathematics
o (HPC) parallel codes for QT :: open source,

@ huge simulations of physical configurations (compare with our own
experiments).

http://qute-hpc.math.cnrs.fr/
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Overview

Q Two-fluid HVBK model and quantum turbulence
@ Two-fluid conception of superfluid helium
@ Quantum turbulence and vortex lines
@ The HVBK model and the mutual friction force

e Results of direct simulation of HVBK
@ Hydrodynamic behaviors accounting for the mutual friction
@ The role of the friction force on the energy budget
@ The role of the friction force on the turbulence intermittency
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Two-fluid conception of superfluid helium

Liquide Helium under 2.1K viscous paradox: frictionless but viscous
@Alfred Leitner 1963 from Michigan stat university

o The superfluid: helium Il two-fluids model
no viscosity (Landau 1941)
free of entropy

e Normal fluid: pn, Vi, vn

e Superfluid: ps, Vs
e The normal fluid:
viscpsity e For OK < T < T, mixture of two
carries entropy fluid p = pn + ps, for T > T,
ps/p=0;for T = 0K, pn/p=0
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Thermal counter-flow and quantum turbulence

Second sound wave oscillation of T and S, first sound wave ocsillation of p and P

Vn

Helium Il a

Q= pSTvy, j=psVs+ pava=0and Vis = vy — vs = Q/(STps)
Heat transfer in liquid helium like a sound wave
"Second sound” u3 = TS?ps/Cpn

Q > Quritica then vortex line are created
Quantum turbulence contains a large number of randomly distributed vortex lines
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Vortex lines in helium Il

e The circulation is quantized in unit circulation of %, with A is the Plank’s constant and
mis the helium atom mass, thus

m:fvsdr: h, w=20=nk
m

with w is the voritcity of rotating solide body and n is the volume line density
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Vortex lines and mutual friction force

The experiment of second sound wave attenuation propagating in rotating helium I

[Vinen & Hall 19586].

raY
£
A\

SEYY
A 20 .,
il U

Z.Zhang

Mutual friction force

e A volume force: independent to the
geometric nor the position

e depends on the relative orientation of
relative velocity and the rotating axis

e depends on the angular velocity .
Feynman’s rule: 2Q = V x vs = kL.

e Model: Each vortex line is the scattering
center of the excitation (rotons), where
brings the momentum exchange (Newton’s
Laws)
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HVBK two-fluids model

The mutual friction force writes:

Fy = PP @ N@ AN Vs = Vo)) _ prpson, ey )
p |w| P

with B and B’ are two temperature dependent parameter, and w = V x Vs, Vv, is the

normal fluid velocity and vs is the superfluid velocity.

The governing equations write:

V.v,=0, V.vs =0 (2)
0 1
8‘/" +V(Vn®vn):_Vpn+*FM+VnAVn+fext (3)
OVs 1
ot (VS %) Vs) = —Vps — *FM + Vs AVs + foxt (4)

Vortex lines polarized? turbulence — random vortex lines, bundle coherent structure
Good estimation on macroscopic scales
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3DT HVBK solver

Code HVBK 3d turbulence: p3dfft(2D decomp), pseudo-spectral method, 3D periodic
boundary conditions. Parallel computing on cluster Myria CRIANN.
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Figure: The scaling test N=512 of code (o) 2D decomposition (x)1D decomposition, Speedup =
Time(nprocs = 1)/Time(nprocs = N).
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Direct simulation of HVBK

e The slop ”-5/3” on inertial scales of energy spectrum, dissipation scale decreases
with temperature decreases, the coupling energy loss due to the relative velocity.

Energy spectrum

10
10° 10" 10%

k

pn/ps = 0.74

Figure: (a) Turbulence energy spectrum for different temperature (density ratios); (b) Spectrum for
dissipation, relative velocity and mutual friction force energy.
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Direct simulation of HVBK

o Two fluid are strongly correlated with each other, the energy exchanging is strongly
associate to the vorticity.

Figure: (a) Snapshot of iso-contour w2 = 5rms(w?2) in normal fluid, (b) Snapshot of
w2 = 5rms(w?) in super fluid, (c) Energy exchange un.Fns in normal fluid. (blue) iso-contour of
6rms, (red) iso-contour of -3rms.
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Direct simulation of HVBK

e The energy exchange mainly occurs in the intense vorticity region and it is
intermittent.

Figure: (left)The energy exchange in normal fluid un.Fhps, (right) the enstrophy of normal fluid |Qn[2
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Direct simulation of HVBK

e The dissipation rate ¢ follows the log-normal PDF according to the eddy-cascade
Richardson model as well as the coupling energy PDF.
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Figure: (left) The normalised P.D.F of locale viscous energy transfers rate, the form is similar to a
log-normal distribution (well known as the classical turbulent). (right) The normalised P.D.F of
2

o

locale energy exchanging rate (red) ¢ and (blue) ¢s, (- -) a log-normal distribution with u = —%-
and 02 = 0.6931.
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The scales-by-scales energy budget

We follow the classical approach in HIT for the second order structure function
transport equations, and integration from 0 to r obtain the 4/3 law, viz.

T R doerz_ 40
—oun(oup)? — 72/0 S2L ds + 2vn 4 (0uf)? = zer, ©)

— 1 [, dap_ 4.

_ S s\2 _ s —_ $)2 — — S
ouF (oup) r2/o STLTds + 2verg (OUF)" = e ©

with

L= —2%(5u{’)(5/:,-"5) —2(6up)(of7), )
£ = 22 GURFT®) - 2(0)57F) ®)

where uj is the velocity component parallel to vector 7, r = ||, 6f = f(X + 7) — f(X) and
for isotropic &f depends only r
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The scales-by-scales energy budget

S Guy = g, ©
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Figure: The case pn/p = 0.9 and vs = 0 (-) The convection term —du; (6u)?, (- -) the mutual
friction term 22 % Jo $2(5u)(5F%)ds for normal fluid and 20 L [y $2(3us)(6FS)ds (- ) the
viscous term (s+¢) the external forcing term. Normalised by 4 /3"
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The scales-by-scales energy budget

d Gu)E = %Er, (10)

— 1 [T
— )2 — — -
ouy(our) fz/o s°Lds+2v ;

7/ Lint 7/ Lint

Figure: The case pn/p = 0.1 and vs = 0.1v, (-) The convection term —du (6u;)?, (- -) the mutual
friction term 22 % Jo $2(5u)(5F%)ds for normal fluid and 20 L [y $2(3us)(6FS)ds (- ) the
viscous term (s++) the external forcing term. Normalised by 4/3¢" for the normal fluid and

Normalised by 4/3<*° for the superfluid.
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The vortex stretching and the intermittency

2 6
OtDy11 + (ar + 7) Di111 — 7D1122 = —Ti11 +2vC — 2vZy11 + MF + Fext, (11)

with , = d/ar,
Dyy1 = (0u)3;

Dy111 = (du)*;
D1122 = (5U)2((5V)2;

4 4
C(r,t) = *ﬁDm(”, )+ 73rD111 + 0r0rD111;

ou\? ou\?
(a—xl) + (8)(,,) ] (12)
where du = u(x + r) — u(x) is the longitudinal velocity increment, v = v(x 4 r) — v(x)

is the transverse velocity increment and double indices indicate summation and a
prime denotes variables at point x + r. Finally,

_ 2. (0p
Ti11 = 3(6u)*6 <5Tx) (13)

Z111 = 36u
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The vortex stretching and the intermittency

2 6
0tDi11 + <3r + 7) Dy111 — FDHZZ = —Ti11 +2vC — 2vZy11 + MF + Fext, (14)

Eps/p =0.09

/1 T /1

Figure: Balances of different terms in equations for the normal fluid (left) and the superfluid (right)
for density ratios pn/p = 0.91. (e—) (0r +2/r)D1111, (0—) (Or +2/r)D1111 — 6/r.D1122,
(black —-) —T111, (x— ) —2vC (- - -) positive part of 2vC, (- -) —2vZ111, (A—) coupling terms,
(green —:) for the external forcing term. The plots are dimensionless.
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The vortex stretching and the intermittency

2 6
0tDi11 + <3r + 7) Dy111 — FDHZZ = —Ti11 +2vC — 2vZy11 + MF + Fext, (19)

/1 T /1

Figure: Balances of different terms in equations for the normal fluid (left) and the superfluid (right)
for density ratios pn/p = 0.09. (e— ) (0r +2/r)D1111, (0—) (Or +2/r)D1111 — 6/r.D1122,
(black —-) —T111, (x— ) —2vC (- - -) positive part of 2vC, (- -) —2vZ111, (A—) coupling terms,
(green —:) for the external forcing term. The plots are dimensionless.
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Conclusions

HVBK two-fluid model DNS show that:

e The normal fluid and the superfluid are highly correlated due to the mutual friction in
large scales.

e The mutual friction exchange momentum between the two fluid component,
averagely it extract energy from the superfluid and add energy to the normal fluid.

e The large energy exchange mainly happens at the strong vorticity region, which is an
intermittent effect.

e The mutual friction has a very important impact to the energy balance. The energy
cascading in the inertial sub-range are characterised by both the local dissipation rate
and the mutual friction energy exchanging.

e The mutual friction has little impact on the vortex stretching, thus having limited
influence to the intermittency of the turbulence.
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