Numerical Simulation of thermo-convective flows induced by electric fields in cylindrical annular cavities with dielectric liquids

Changwoo Kang¹ & <u>Innocent Mutabazi</u>

Normandie Université, CNRS-Université du Havre,

LOMC UMR 6294, Laboratoire Ondes et Milieux Complexes, Le Havre, France

¹Department of Mechanical Engineering, Jeonbuk National University

Introduction

- Geophysics concern : how to make experiment that simulates the convection in planets interior? Need for a real radial gravity
- Hart *et al* (JFM 1986): use of radial dielectrophoretic force in spherical cavity in the Spacelab 3 on the space shuttle Challenger in May 1985
- ESA project : GeoFlow (2008-2017) : Experiment in Fluid Science Laboratory of Columbus on ISS by Brandenburg Technology University in Cottbus (LAS, Prof. C. Egbers)
- **ATMOFLOW 2020-2024**

(DRL for LAS in collaboration with CNES for LOMC) Investigation of atmospheric flows near the equatorial zone

- Application 1: Generation of thermal convection in a low-gravity environment
- Application 2 : Enhancement of heat transfer by electric voltage in aerospace (with reduced weight constraints)

ELECTRIC FORCE IN A DIELECTRIC FLUID

• The pondermotive force in a dielectric fluid of density ρ and permittivity ε under the action of an electric field \vec{E} is given by the Helm holtz relation (Landau & Lifshitz, EM, T8)

$$\vec{f} = \rho_e \vec{E} - \frac{1}{2} \vec{E}^2 \vec{\nabla} \mathcal{E} + \vec{\nabla} \left[\frac{1}{2} \rho \left(\frac{\partial \mathcal{E}}{\partial \rho} \right)_T \vec{E}^2 \right] \begin{bmatrix} T_1 & \vec{E} & T_2 \\ \vec{E} & \vec{E} & \vec{E} \end{bmatrix}$$
Coulomb Dielectrophoretic force (DEP) force Electrostriction force

- High frequency electric field $f >> \max(1/\tau_v, 1/\tau_\kappa, 1/\tau_e, 1/\tau_{ion}) \implies$ neglect free charges (Coulomb force)
- Electrohydrodynamic Boussinesq approximation : linear variation of the permittivity and density with temperature

$$\rho(T) = \rho_0 \left[1 - \alpha (T - T_0) \right] \quad \text{and} \quad \varepsilon(T) = \varepsilon_1 \left[1 - e(T - T_0) \right]$$

ELECTRIC FORCE IN A DIELECTRIC FLUID

• The dielectrophoretic force can be split into a conservative force and buoyancy force

$$\vec{f}_{DEP} = -\frac{1}{2} \vec{E}^2 \vec{\nabla} \mathcal{E} = \vec{\nabla} p_e + \delta \rho \vec{g}_e$$

• Electric gravity : conservative buoyancy force force
$$\vec{g}_e = \frac{1}{\rho_0 \alpha} \vec{\nabla} \left(\frac{\mathcal{E}_1 e}{2} \vec{E}^2 \right) \text{ where } \begin{array}{c} \rho(T) = \rho_0 [1 - \alpha(T - T_0)] \\ \varepsilon(T) = \varepsilon_1 [1 - e(T - T_0)] \end{array}$$

• Magnitude of the electric gravity ~ V^2 , ε_1 , e

ELECTRIC GRAVITY IN SIMPLE GEOMETRIES

The dielectrophoretic force in spherical geometry models the mechanism of convection in planets [GEOFLOW, B. Futterer & C. Egbers, BTU, Cottbus, Germandy]

Electric gravity for some liquids

The electric gravity in dielectric fluid betwen parallel plates is

$$g_e = \frac{\varepsilon_1 e V_0^2}{\alpha \rho_0 d^3}$$

The electric gravity : $g_e \sim V_0^2$; $g_e \sim \frac{1}{d^3}$

 $V(t) = 2^{1/2} V_0 \sin \omega t$

d = 1cm, $\Delta T = 1$ K, $V_0 = 1$ V

Fluid	$10^{-3} \rho$ (kg m ⁻³)	$\frac{10^3 \alpha}{(K^{-1})}$	ϵ_r	$e (K^{-1})$	$(m s^{-2})$
Acetonitrile	0.777	1.38	36	0.155	$7.11 \\ 10.92 \\ 1.11 \\ 0.01 \\ 2.73 \times 10^{-5}$
Nitrobenzene	1.198	0.830	34.9	0.188	
Acetone	0.785	1.43	19.1	0.086	
Chlorobenzene	1.101	0.985	5.61	0.0157	
Silicone oil M5	0.920	1.08	2.7	1.065×10^{-3}	

Thermoelectric convection in cyindrical annular cavities

- ✓ The effect of a thermo-electric body force on the flow of a dielectric liquid with a radial temperature gradient and an alternating electric voltage in cylindrical annular cavities has been studied
- by linear stability analysis (infinitely long annulus)
- by weakly nonlinear analysis (infinitely long annulus)
- by direct numerical simulations (DNS) for $\eta = R_1/R_2 = 0.5$, $\Gamma = L_z/d = 20$

LSA in a cylindrical annulus: Critical electric Rayleigh number

 $2\pi R_0$

(Yoshikawa et al. Phys. Fluids 25, 024106, 2013)

Heat transfer in the thermoelectric convection in microgravity

The 3 velocity components are of the same order of magnitude in contrast with the Couette-Taylor problem where the azimuthal component is dominant

Travnikov et al., Phys. Fluids 27 (2015)

Experiment in parabolic flight

0.8

0.6

0.4

0.2

L = 17600

Do we observe columnar or helical vortices?

Experiment in parabolic flight

Experiment in parabolic flight

Natural convective cell + DEP buoyancy

Meyer et al. CRME 345 (2017)

Problem Formulation

Governing equations (Electro-hydrodynamic Boussinesq approximation)

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} &= -\nabla\pi + \nu\nabla^{2}\mathbf{u} - \alpha\theta(\mathbf{g} + \mathbf{g}_{e}) \\ \frac{\partial\theta}{\partial t} + (\mathbf{u} \cdot \nabla)\theta &= \kappa\nabla^{2}\theta \\ \nabla \cdot (\epsilon E) &= 0 \qquad \epsilon = \epsilon_{2}(1 - e\theta) \qquad E = -\nabla\phi \\ \rho(\theta) &= \rho(1 - e\theta) \qquad \mathbf{g} = -g\vec{e}_{z} \qquad \mathbf{g}_{e} = \frac{e}{\alpha\rho}\nabla\frac{\epsilon_{2}E^{2}}{2} \\ \pi &= \frac{p}{\rho} + gz - \frac{e\theta\epsilon_{2}E^{2}}{2\rho} - \frac{1}{2}\left(\frac{\partial\epsilon}{\partial\rho}\right)_{T}E^{2} \qquad \theta = T - T_{2} \end{aligned}$$

✓ Control Parameters

 $\nabla \cdot \mathbf{n} = 0$

 $\eta = R_1/R_2 = 0.5$ $\Gamma = L_z/d = 2.0 \qquad \Delta T = T_1 - T_2$ $Gr = \alpha \Delta Tg d^3/v^2 = 530 \text{ (laminar convective cell)}$ Pr = 65 (Silicone oil AK5)

< Schematic of flow geometry >

 V_E : Dimensionless electric potential difference

$$V_E = V_0 / \sqrt{\rho v \kappa / \epsilon_2} = 0 \sim 10\ 000$$

 $g_e = 20.6 \text{ m/s}^2, L = 72 \ 306 \text{ for } V_E = 10 \ 000$ $L = \alpha g_e \Delta T d^3 / \nu \kappa, L \sim V_E^{-2}$

L : electric Rayleigh number

Numerical methods on CRIANN

Numerical method

- ✓ Finite Volume Method (Cylindrical coordinate system)
- ✓ Fractional Step Method
- ✓ Spatial discretization
 - Central difference scheme
 - QUICK scheme
- ✓ Time advancement
 - 3rd Runge-Kutta scheme
 - 2nd Crank-Nicolson scheme

✓ Boundary conditions

$$\mathbf{u} = 0, \ \theta = \Delta T, \ \phi = V_0 \quad \text{at} \ r = R_1$$

 $\mathbf{u} = 0, \ \theta = 0, \ \phi = 0$ at $r = R_2$

$$\mathbf{u} = 0, \ \partial \theta / \partial z = 0, \ \partial \phi / \partial z = 0 \text{ at } z = 0, H$$

✓ Grid resolution : $64(r) \times 128(\phi) \times 256(z)$

Computational details

✓ In-house code written by FORTRAN 77

with OpenMP (for parallelization)

- ✓ Storage capacity : 1GB per each computation
- Computing time : Average 30 days per each computation with 16 cores.
- ✓ CPU base computation

Natural convective cell + DEP buoyancy

 \succ Base flow

✓ The base flow is maintained up to V_E =1100.

Natural convective cell + DEP buoyancy

Columnar vortex

 $V_E = 1,200$

Q = 0.5

Case 1 : Natural convective cell + DEP buoyancy

Columnar vortex

Case 1 : Natural convective cell + DEP buoyancy

Regular wave

 ✓ A stronger electric body force amplifies the momentum advection in columnar vortices and rises the oscillatory mode. [Busse (JFM, 1972), Clever & Busse (JFM, 1974)]

Case 1 : Natural convective cell + DEP buoyancy

- ✓ "The symmetry-breaking perturbations in the flow of thermal convection can hasten the chaos by producing a modulation of the rolls." [McLaughlin & Orszag (JFM, 1982)]
- ✓ The disturbances of dissymmetric mode arising from regular waves lead to chaos as the electric voltage V_E grows.

➤ Transition to chaotic flow

- ✓ Vortices are more branched off into several parts and become more complex for V_E = 4 000.
- ✓ Vortices are split into small ones and the longitudinal ones are no longer dominant for $V_E \ge 6~000$.

 \blacktriangleright Variation rate of the kinetic energy $E_k = \mathbf{u}^{2/2}$

Natural convective cell + DEP buoyancy

<u>Take-home message</u> : Vortices generated by the electric field cause a significant enhancement of the heat transfer.

Kang & Mutabazi, *J. Appl. Phys.* **125**, 184902 (2019), Editor's pick Kang & Mutabazi, *J. Fluid. Mech.* **908**, A26 (2021),

Effect of solid-body rotation on DEP-induced convection

DEP + Solid-body Rotation

Conclusion

1. Thermoelectric convection in a cylindrical annular cavity in micro-gravity appears in form of stationary helical vortices.

2. Superimposition of the ground gravity induces a convective cell and leads to stationary columnar, dynamics of which is driven by the electric voltage.

3. The Coriolis force due to solid-body rotation of a cylindrical annulus with ΔT and V_E transforms helical vortices to columnar vortices

4. Take-home message : Helical modes of thermoelectric convection in cylindrical annular cavities are destabilized either by solid-body rotation or a small Archimedean buoyancy

Kang, Meyer, Yoshikawa & Mutabazi, Phys. Rev. Fluids 4, 093502 (2019)

OUTLOOK

Thermomagnetic convection induced by in ferrofluids

Ferrofluid :

colloidal solution of magnetic nanoparticles (e.g. Fe_2O_3)

Kelvin body force

$$\boldsymbol{F}_{K} = M\boldsymbol{\nabla}B = -MB_{0}k_{b}K_{1}(k_{b}r)\boldsymbol{e}_{r}$$
$$M = M_{ref}\left(1 - \alpha_{m}\theta\right) \quad \theta = T - T_{ref}$$

$$\boldsymbol{F}_{K} = \underbrace{\alpha_{m} M_{ref} B_{0} k_{b} K_{1}(k_{b}r) \boldsymbol{\theta} \boldsymbol{e}_{r}}_{-\alpha \boldsymbol{\theta} \rho_{ref} \boldsymbol{g}_{m}} + \boldsymbol{\nabla} \begin{bmatrix} M_{ref} B_{0} K_{0}(k_{b}r) \end{bmatrix} \\ \boldsymbol{g}_{m} = -\frac{\alpha_{m} M_{ref} B_{0} k_{b} K_{1}(k_{b}r)}{\alpha \rho_{ref}} \boldsymbol{e}_{r}$$

Labex EMC³/Project INFEMA

THANK YOU FOR YOUR ATTENTION

