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Why the interest in predicting turbulence?

2

Deck, S., Gand, F., Brunet, V., & Ben Khelil, S. (2014). High-fidelity simulations of unsteady civil aircraft
aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation. Philosophical
Transactions Of The Royal Society A: Mathematical, Physical And Engineering Sciences, 372(2022), 
20130325. doi: 10.1098/rsta.2013.0325

Cyclones at Jupiter’s north pole.
NASA, JPL-Caltech, SwRI, ASI, INAF, JIRAM



The opportunity for Machine Learning in 
Turbulence Modelling
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Considers a 
wide range of 
flow conditions

Minimal error with 
regards to existing 
experimental and 
high fidelity data

Optimal cost-
benefit of 

implementation

Optimal 
Model

“It would be extremely valuable to 
develop a general methodology to 
determine optimal models” –

Pope, Stephen (1999) . A Perspective On 
Turbulence Modelling



Uses of ML in Computational Fluid 
Dynamics
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Vinuesa, R., & Brunton, S. L. (2021). The Potential of Machine 
Learning to Enhance Computational Fluid Dynamics. 

ArXiv:2110.02085 [Physics]. http://arxiv.org/abs/2110.02085



Reduced-order Modelling of Turbulent 
flows

Control 
Applications

Design 
Optimization

Accelerating 
Simulations Risk Analysis
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Methods

1. Fully Data-Driven approach: 
Convolutional Autoencoder + LSTM

2. Physics-Informed Machine 
Learning: DeepONet
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Data: 2D Turbulence
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Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., 
Stuart, A., & Anandkumar, A. (2021). Fourier Neural Operator 

for Parametric Partial Differential Equations. ArXiv:2010.08895 
[Cs, Math]. http://arxiv.org/abs/2010.08895

https://github.com/zongyi-li/fourier_neural_operator

http://arxiv.org/abs/2010.08895


Convolutional Autoencoder + 
LSTM
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Data-driven ROM: CAE + LSTM

Mohan, A., Daniel, D., Chertkov, M., & Livescu, D. (2019). 
Compressed Convolutional LSTM: An Efficient Deep Learning 

framework to Model High Fidelity 3D Turbulence. 
ArXiv:1903.00033 [Nlin, Physics:Physics]. 

http://arxiv.org/abs/1903.00033
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A convolutional Autoencoder lowers the 
dimensionality of the problem.

Learns unsteady behavior

Tensor-Train decomposition for better long 
range predictions

Encoder

Decoder
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Convolutional Autoencoder for 
dimensionality reduction
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Recurrent Neural Network
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Long Short Term Memory Network (LSTM)
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Training of CAE+LSTM
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Sample Snapshots of solution 
of the system: !

Forward pass through 
autoencoder:
"! = ℎ%&' o )*+,- o ℎ&.' !

Compute Loss:

/ = "! − !
1

1

Update model 
parameters:

2345 = 23 − 6∇8/

While |/3 − /345| < ;,<&+=>*% : Online stage:

Project input features to 
latent space:

?@ = ℎ&.' A!-

Predictions on latent variable:

?3 = ) ?@; C ,

E = {1, . . , I}

Reconstrcut to original 
variable space:

"!KL = ℎ%&'(?3)



Physics-Informed DeepONet
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A primer on Physics-Informed Neural 
Networks
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Finite Element Method vs. Physics-Informed 
Neural Networks

PINN FEM

Basis function Neural Network Piecewise polynomial

Parameters Weights and Biases Point Values

Discretization Scattered Points (Mesh-free) Mesh points

PDE Embedding Loss Function Algebraic System

Parameter Solver Gradient Based Optimizer Linear Solver

Errors !"##, !%&', !(#) Approximation/quadrature errors

Error bounds Not available yet Partially available
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Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). DeepXDE: 
A Deep Learning Library for Solving Differential Equations. 

SIAM Review, 63(1), 208–228. 
https://doi.org/10.1137/19M1274067

https://doi.org/10.1137/19M1274067


Physics Informed Machine Learning: 
Learning Operators
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Let !, # are Bancah Spaces of functions defined on 
bounded Domains $ ⊂ ℝ', $( ⊂ ℝ') respectively.

Suppose we have acces only to observations 

*+, ,+ +-.
/

Where *+~1 are samples drawn from some
probability measure supported on ! .

And ,+ = 3 *+ is possibly corrupted with noise.



Learning the solution operator of a PDE
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Given	a	non-linear	PDE	like:

12
13 + 5 2 = 7(9)

We can approximante the solution operator for the PDE that solves the initial value problem for 
a distribution of initial conditions:

;<: 2= → 2 9, 3 + ∆3 , 2=~B C ∈ E



Method: DeepONet
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Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). 
Learning nonlinear operators via DeepONet based on the 

universal approximation theorem of operators. Nature Machine 
Intelligence, 3(3), 218–229. https://doi.org/10.1038/s42256-

021-00302-5



Physics Informed DeepONet
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Wang, S., Wang, H., & Perdikaris, P. (2021). Learning the 
solution operator of parametric partial differential equations 

with physics-informed DeepOnets. ArXiv:2103.10974 [Cs, Math, 
Stat]. http://arxiv.org/abs/2103.10974



Neural Network Architecture: Fourier 
Feature Network
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Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., 
Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. 

(2020). Fourier Features Let Networks Learn High Frequency 
Functions in Low Dimensional Domains. ArXiv:2006.10739 [Cs]. 

http://arxiv.org/abs/2006.10739



PI-DeepONet for the N-S equation
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Results
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Results for CAE-LSTM
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! = 1$ − 4



Results for CAE-LSTM
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Ground truth Prediction



Results for CAE-LSTM
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! = 30%! = 11%



Results for CAE-LSTM
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Results for PI-DeepONet
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Results for PI-DeepONet
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Results for PI-DeepONet
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! = 30%! = 11%



Limitations

CAE-LSTM

• Dependent on 
discretization

• Difficulty for long-term 
predictions.

• No physical knowledge 
imposed to the model.

• Needs lots of data

PI-DeepONet

• Tricky to train
• Not accurate enough 

(yet!)
• Many parameters to tune, 

including the type of 
architecture.

• Long training times
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Perspectives

1. Try other architectures for Neural Operators (Fourier Neural 
Operator, Graph Neural Operator, etc) and use them with PINNs.

2. Different training algorithms could improve results, for example 
recurrent training or transfer learning.

3. Use physics Informed Neural Operators for a 3D turbulent case.

4. Apply these methods in a CFD application.
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Thank you for listening
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