

Gas Hydrates : Properties and opportunities for **The Energy Transition**

Dr. V. Valtchev

A.Omran

October, 21th 2021, Le Havre

CRIANN Scientific Day

Dr. N. Nestrenko

A. Omran ,MSc. Chemical Engineer, AMIChemE,SMAIChE,MSFGP and SCF

Hydrate For Energy Zeolites As A Solution

0

AGENDA

Introduction

Solution Methane Storage

CH₄-CO₂ Replacement

Hydrogen Storage

* Conclusion

Δ

Beyond *vdW-Platteeuw* Model:

- Although one of the best applications of statistical thermodynamics, VdW-Platteeuw theory has its limitations
- Understanding the different molecular interactions and their effect on the stability and capacity gas hydrate and hydrate formation condition.
- 3 Main interactions:
 - 1) Guest-Host Interaction (*hilfsgase*).
 - 2) Guest-guest Interactions.
 - 3) Host-Host Interaction.

Microscopic Induction Time : Gas dissolution

Hassanpouryouzband, A. et al(2020). Chemical Society Reviews, 49(15), 5225-5309.

Safe and long term Storage (CH_4, H_2, CO_2) ?

Discrete gas resources (fuel gas, shale gas)?

Strategic Storage Plan!

https://www.reuters.com/ Gas Crisis 2021

Energy Policy and Conservation Act of 1975 (EPCA)

Storage!

https://www.cvce.eu/

Oil Crisis 1973

Energy Storage: SNG vs LNG

Average Cost Breakdown

- SNG plant has almost half cost of LNG one of the same capacity (CAPEX).
- Transportation and storage will require high compression power. 18-25% cost reduction is estimated in case of NGH transport².

1-Lee, I. et al. (2017). Industrial & Engineering Chemistry Research, 57(17), 5805-5818.

2- Kanda, H. (2006, June). In 23rd world gas conference, Amsterdam.

DFT Calculation of Interaction Energy and H-bonding:

Carbon Capture Technologies

- Current capture technologies has its drawbacks.
- Membranes cost 24-48\$ per ton.
- MOFs sustainability affected by impurities, humidity and pressure drop.
- Absorption is energy intensive

What about sequestration?

Yu, Y., ZHANG, X. W., Liu, J. W., Lee, Y., & Li, X. (2021). Energy & Environmental Science.

CH₄ Recovery - CO₂ Sequestration:

Energy-efficient natural gas hydrate production using gas exchange

Maintain the geological structure.

-Practical, already applied in the USA (Alska) and reported in Japan and Canda.

Challenges: Slow kinetics, storage capacity and replacement mechanism.

Mok, J., Choi, W., & Seo, Y. (2020). Chemical Engineering Journal, 389, 124434.

Hole-in-the-Cage Model

2 Steps (1)Fast Surface reaction followed by(2) slow solid state diffusion.

A <u>water vacancy is needed</u> for a successful jump of a guest molecule into a <u>neighboring</u> (<u>empty) cage</u>. The guest migration paths follow mostly connected LCs.

Water vacancies (white spheres and thin broken arrows) CH_4 - and CO_2 -guest atoms (thick dark green and gray arrows) Light gray (LCs) and dark gray (SCs).

A. N. Salamatin *et al* **J. Phys. Chem. C** 2017, 121, 17603–17616

CH₄ Recovery - CO₂ Sequestration

Hydrogen H₂

zero emission

Targets: Blue Hydrogen Storage

- Check the thermodynamic stability of sI clathrate containing hydrogen.
- Possibility of double occupation of hydrogen with methane or is large cages.
- Evaluate the storage capacity of binary CH₄-H₂ compared to DOE targets.
- Study the diffusion of H₂ hopping between different cages that are either empty or pre-occupied by CH₄ or CO₂.

Hydrogen production from renewable and non-renewable is no longer problematic. It is the **safe storage** that represent the major challenge and bottleneck for sustainable hydrogen economy.

	H ₂ wt%	kW.h/kg	kW.h/L
sII (64H ₂ .136H ₂ O)	5.3	1.8	1.5
sl (10.H ₂ .6CH ₄ .46H ₂ O)	1.3	1.3	1.4
sl (6H ₂ .8CH ₄ .46H ₂ O)	0.5	0.9	0.9
sl (24H ₂ .2CH ₄ .46H ₂ O)	5.0	2.0	1.8
2020 DOE target	4.5	1.5	1.0
2025 DOE target	5.5	1.8	1.3
Ultimate DOE target	6.5	2.2	1.7

CH₄-H₂ system could achieve compromise and achieve current and future DOE hydrogen storage targets...

- As mentioned, only 6% CH₄ of are required to stabilize sl as per thermodynamic modeling.
- As per our calculation CH₄ preferably occupy the small cages leaving the large cages to be stabilized by hydrogen.
- CH₄ can be controlled through formation conditions or using templates.

Conclusion:

- Gas Hydrate can play a central role in energy transition and can be easily integrated with existing technologies.
- Methane Hydrate represent a good opportunity for long term and large scale natural gas storage that can allow market stability and medium and long term.
- Amino acids and acidic zeolites are effective and environmental friendly kinetic hydrate promoters.
- Ab initio calculations can be **powerful tool** to determine clathrate hydrates properties.
- It is necessary to choose the proper correlation functional that approximately accounts for dispersion interactions.
- CO₂-CH₄ replacement mechanism goes through double occupation mechanism rather than cage-in-the-hole scenario.
- H₂ can be accommodated the large cage of sI along with CO₂ or CH₄ resulting in storage capacity of **5.00 wt%** of molecular hydrogen. However, the gravimetric and volumetric capacities are **2.0** kW.h/kg and **1.8** kW.h/L, respectively. This makes that system a promising material to fulfill DOE target or large and safe storage.

Industrial Chair (ANR-TotalEnergies)

Acknowledgment

We would like to thank CRIANN team for their support.

